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PART 4

LM2-TOXIC

Appendix 4.4.1  Sample Data Interpolation
for the LMMBP

Xiangsheng Xia
Computer Sciences Corporation
Large Lakes Research Station
9311 Groh Road
Grosse Ile, Michigan 48138

Many sample data sets of physical and chemical
parameters collected for the Lake Michigan Mass
Balance Project (LMMBP) were often sparse and
occurred on irregular grids.  For modeling purposes,
values of these parameters were needed on a 5 x 5
km grid.  This presented a problem of using sample
data to estimate or predict values in areas which
were not sampled.  Thus, some  interpolation
mechanisms based on “insufficient” samples were
needed  to bridge the gap between the desired and
the reality world of data collection.  Distance square
inverse and natural-neighbor interpolation methods
were carefully studied and applied to sample data
analysis for  this project.

The distance-weighted-averaging approach
determines  the estimated values  at grid points as
the sum of weighted values of the individual sample
datum.  In general, the closer a datum point to the
grid point to be estimated, the greater influence the
datum at that point exerts.  It is a method
characterized as a global approach. The distance-
weighted-averaging method is well understood and
widely accepted by scientists in various fields.  It is
also  easy to implement.  The major disadvantage of
this method  has been its tendency to smooth out all
small variations in the relatively small local area.

Therefore, it is not very well suited to find the trend of
samples in small local areas.  The distance-weighted-
averaging interpolation is compromised by  its
essentially one-dimensional nature.  Although the
interpolating surface is smooth, it cannot, for
instance, form ridges or domes from sparse data.
Furthermore, distance-weighted-averaging is unable
to infer (or extrapolate) a surface lying above or
below the range of sample  values.  In general, the
estimation computed by distance-weighted-averaging
lies between the maximum and minimum of the
sample data. 

Neighborhood-based interpolation, on the other
hand, is a local approach which utilizes all the
(natural) neighbors of the sample points. The natural-
neighbor method  can infer values outside the known
range. It  is unique for a given data configuration and
choice of blending function parameters.  If used
properly on dense data sets, neighborhood-based
interpolation can provide much richer information
such as rapid changes, ridges, or dams in smaller
areas.  However, neighborhood-based interpolation,
in contrast to distance-based methods, is much more
complicated to implement and harder  to understand.
In case an ambiguity or unexpected phenomena
arise from a neighborhood-based interpolation, it may
require a knowledgeable person to make  reasonable
interpretation of results.

During the course of the LMMBP data analysis
process, distance square inverse interpolation
combined with application codes written in
Interactive Data Language (IDL) were used
intensively to find the interpolated values of a 5 x 5
km grid of Lake Michigan for various parameters,
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such as polychlorinated biphenyls (PCBs), atrazine,
nutrients, etc.  On the other hand, natural-neighbor
interpolation was primarily used for sediment data
analysis where sample locations were relatively
dense.

More details of distance square inverse and natural-
neighbor interpolations are presented in the next two
sections.  Many applications of interpolation have
been developed, including  contour plots, volume-
weighted averages, and others. These are
discussed in Section 4.4.1.4.  Some problems
applying natural-neighbor interpolation are discussed
in Section 4.4.1.5.  

4.4.1.1  The Distance Square Inverse
Method

The inverse distance to a power method is a
weighted-average interpolation. Data are weighted
during interpolation such that the influence of one
sample point relative to another declines with
increasing  distance from the grid node.  Weighting is
assigned to data using a weighting power that
controls how the weighting factor drops off as
distance from a grid node increases.  As the power
increases, the grid node value approaches the value
of the neighboring data points.  The weighting power
determines how quickly weighting falls off with
distance from the grid node.  As the power
approaches  zero, the generated surface approaches
a horizontal planar surface through the average of all
observations from the data file.  As the power
increases,  the generated surface is a “nearest
neighbor” interpolation, and the resultant surface
becomes polygons which represent the nearest
observation to the interpolated node.  Power values
are usually between one and three to avoid extreme
results.  Distance square inverse is the distance-
weighted method with the power chosen as two.

The smoothing factor parameter allows one to
incorporate an uncertainty factor associated with
sample data.  The larger the smoothing factor
parameter, the less influence a particular
observation has in computing a neighboring grid.
The smoothing factor for this study was  2.5 (miles).

The equation in the inverse distance square method
is:

(A4.4.1.1)

where

j = runs for all samples

vi = interpolated value at grid point i,

Cj = value of sample j,

di,j = distance between grid point i and sample
location j,

ro = smoothing factor

n = total number of samples being considered in
the interpolation

An IDL code which implements the inverse distance
square interpolation scheme was received from
David Schwab (National Oceanic and Atmospheric
Administration, Great Lakes Environmental
Research Laboratory). This was further developed for
the LMMBP data analysis.

4.4.1.2  The Natural-Neighborhood Method

Natural-neighbor interpolation offers a different
approach to spatial interpolation and extrapolation.
It  has good mathematical properties and offers more
flexibility than the distance square inverse method. 

All interpolation methods involve, to some extent, the
idea that the value of the interpolated point should
depend more on data values at nearby data sites
than at distant ones.  In natural-neighbor
interpolation, the idea of neighbors in a spatial
configuration is formalized in a natural way and made
quantitative, and the properties of the method
depend on an apparently new geometrical identity
relating this quantitative measure of neighbors to
position.
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Any two data are natural-neighbors if there is a
location or region that is equally close to each of the
pair, and no other datum is closer.  Any three or
more data on the plane are natural-neighbors if no
other datum lies within their circum-circle.  The
spatial relationships determined by a set of natural-
neighbors circles have two common and widely
known graphical representations. These are Voronoi
tessellation (of Voronoi polygons) and Delaunay
triangulations.  The Voronoi tessellation illustrates
that each datum has a unique natural-neighbor
region associated with it and is bounded by halfway
interfaces of that datum with its natural-neighbor.
Neighborhood coordinates are local coordinates
relating the position of the interpolation point to reach
a datum in the neighborhood subset.  These
coordinates (weights for the interpolation), ranging
between zero and one, are proportional to areas
defined on natural-neighbor regions for each of the
data.  Such coordinates are superior to distance-
based coordinates.  Distance-based coordinates
make no allowance for the distances to the other
data; that is, distance-based interpolation is not
sensitive to a changing spatial context.  Finally,
natural-neighbor interpolation is a linear-weighted
average of natural-neighbor coordinates.  The basic
equation used in natural-neighbor interpolation can
be defined as follows:

(A4.4.1.2)

where

Vi = interpolated value at grid point i,

k = number of samples inside the natural-
neighborhood of Vi,

Sj = value of sample j,

Wj = weight associated with Sj.

The c-code nngridr, a complete commercial package
of the natural-neighbor algorithm, from David Watson
(Watson, 1994), with some modification by in-house
developers, was used for developing applications of
natural-neighbor interpolation at the Large Lakes
Research Station (LLRS). 

4.4.1.3  Application

Interpolations, distance square inverse or natural-
neighbor, were needed to build two-dimensional
estimates of a 5 x 5 km grid of Lake Michigan from a
limited number of samples of various parameters.
Other applications could then be applied  based on
the interpolated grid data.

4.4.1.3.1  Contouring Plots

Interpolated grid data is a list of numbers
representing the estimates of physical parameters on
the grid for each grid point.  Contour plots connect
points in the grid having the  same value with lines.
An incredible amount of information about the data
can be revealed by contour plots.  These include
plateaus and canyons, trends, the existence and
location of high and low concentrations, etc.

Contour plots are very effective visualization tools for
analyzing  data.  Contours in this study were created
by using IDL and other tools.  There were a
surprising variety of approaches used to generate
contours.  The various techniques that were applied
possess their own advantages and disadvantages.
IDL’s standard CONTOUR procedure uses grid
contouring which is the most widely used contouring
technique (Research Systems, Inc., 1995, see
Section 15-1).  CONTOUR generates plots from data
stored in a rectangular array (grid data) which usually
is generated by interpolation and extrapolation.
Some other information such as the boundary of
Lake Michigan, sample locations, and the maximum
and minimum values for samples were also
produced.

4.4.1.3.2  Volume-Weighted Averaging With
Formulations

One way to evaluate and validate the performance of
mathematical models is to compare the model output
and the measured data at the same time (cruises)
and same location (segments).  Volume-weighted
average (VWA) is a method to compute the
estimated field data associated with a segment and
a cruise.  Depending on the model and segmentation
scheme used, a segment consists of cells of 5 x 5 km
at certain depth range called a layer. The locations of
cells associated with segments are normally
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provided by segmentation files.  The volume
concentration for one cell can be computed by
multiplying interpolated concentration of this cell by
its volume.  The volume concentration for a segment
is the sum of volume concentration of all cells in this
segment.  And finally, VWA can be computed by
dividing the volume concentration of the segment by
the total segment volume. The equation for
computing VWA is :

(A4.4.1.3)

where

An = volume-weighted average of segment n,

Vi = volume of cell i,

Ci = concentration associated with cell i.

n = total number of cells

Besides the VWAs, statistical information (mean,
variance, standard error) is also generated for the
users.  VWAs were generated by IDL programs
developed in-house.  The interpolated grid field data
were generated by either distance square inverse or
natural-neighbor from samples collected for the
LMMBP project.

4.4.1.4  Discussion

It has been observed and documented that
extrapolations generated by using the natural-
neighbor c-code nngridr could cause problems.
Extrapolation sometimes is necessary to estimate
values for grid points located outside the convex hull,
which is a polygon bounded  by the outermost
sample data points.  At the beginning of the
interpolation process of running nngridr, a very large
triangle is established which encloses all data being
used for interpolation.  Then, a pseudo datum is
assigned to each of the three vertices of the triangle.
Extrapolation, if needed, is  performed based on the
pseudo data. This process is doomed to be
unreliable due to the unpredictable nature of the

pseudo numbers and the large triangle used in this
process.

This problem can be remedied by adding some extra
reasonable pseudo samples at the corners outside
the gridding data area so all interpolated grid points
will be inside the expanded convex hull.  By doing
this, nngridr is forced to use interpolation, rather than
extrapolation, to calculate estimations based on the
original and pseudo samples. This is a more reliable
estimation process.  The choice of pseudo samples,
if necessary, should be based on experience and
nearby samples.

Another limitation of nngridr is that it can only handle
two-dimensional interpolation.  There are occasions
when three-dimensional interpolation is needed.  One
example is the sediment PCB concentration
estimations to be used for fish uptake.  This is much
better represented if the depth of samples could be
utilized to define the neighborhood.  The
neighborhood becomes a three-dimensional ball
instead of a two-dimensional circle.  Because nngridr
is a relatively large program, there was no easy way
to add a three-dimensional interpolation.

4.4.1.5  Steps to Run nngridr

The c-code from David Watson, nngridr, was used to
generate the natural-neighbor interpolation.  Often,
nngridr was called within an IDL program to generate
the interpolation.  Sample data were reformatted to
the required IDL format.  The interpolation on the 5
km grid was then used for data analysis and
visualization (post-process) applications.

Details about how to initialize and run nngridr
together with IDL application programs at LLRS
follow.

1. Change the c-code

In nngridr.c, comment out the statement
‘Instring()’ right after the statement ‘printf’
(“Change parameters or Make the grid? C or M)”,
to prevent the read option from a terminal.
Therefore, the c-code nngridr to generate the grid
is run by using the default option ‘M’.
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2 Initialization

A. Change the make file and then use the
command:  %make -f makefile to generate
the executable code.

B. The nngridr is run first to generate the initial
file and setup parameters (file names, grid
configurations, etc.).  The result will be in
nngridr.ini, which can be used for successive
runs without changing parameters again.
The most important aspect of  initialization is
to generate a two-dimensional grid.  The
southwest corner with longitude -87.9721 and
latitude 41.5845 is used as the origin of the
grid coordinates.  The northeast corner is at
longitude -84.7206 and  latitude 46.1069
which is the grid coordinate of (53, 102).
There is an option to output the grid south-
north or north-south.  The orientation of
output should be set from south-to-north.
Otherwise, the image will be upside down.
See Watson (1994) for more details.

3. Raw data files are pre-processed to prepare the
input data for IDL code.  The formats of data files
should be the same.

4. The configuration of segmentation should be
stored in a file for the segmentation classification.

5. IDL programs are coded to generate data files
similar to jdavis.dat by reading the pre-processed
data.  Coordinates are converted from longitude
and latitude coordinates to 5 km grid coordinates.

6. Once the jdavis.dat is established, nngridr is run
by the following commands within IDL programs:

‘SPAWN, ‘nngridr’, Results, /NOSHELL’.

This creates a child process under the Unix
operating system and stores all messages
generated by this code into the character array
Results.

7 After a successful run (need error checking if run
fails), the grid data should be generated and
named as nngridr.grd.  This file is called in IDL
programs to generate contour plots, VWA results,
and statistics.

8. For the Unix system, both jdavis.dat and
nngridr.grd will be destroyed automatically when
new ones are created.  For other operating
systems,  Microsoft Windows, for example, these
files need to be deleted.

9. Green Bay data need to be processed separately
from open lake data.
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